Math 436 (Spring 2020) - Homework 4

- 1. Which of the following sets are compact?
 - (a) The set \mathbb{Z} of integers in \mathbb{R} .
 - (b) $\{1/n : n \in N_+\}$
 - (c) The set $\{(x, y) \in \mathbb{R}^2 \mid y = \cos x, x \in [0, 1]\}$ in \mathbb{R}^2 .
 - (d) The set $\{(x, y) \in \mathbb{R}^2 \mid y = \tan x, x \in [0, \pi/2)\}$ in \mathbb{R}^2 .
- 2. Show that (0, 1) is not compact.Hint: compare (0, 1) with the real line R.
- 3. Show that (0, 1) is not homeomorphic to [0, 1].
- 4. Show that the subset $\mathbb{Q} \cap [0,1]$ of [0,1] is not compact.

5. Chapter 3: 9

Hint: adapt the proof of Theorem 3.6

6. Let A be a compact subset of a metric space X. Given $x \in X$, show that d(x, A) = d(x, y) for some $y \in A$. Given a closed subset B, disjoint from A, show that d(A, B) > 0.

Here $d(A, B) = \inf \{ d(a, b) \mid a \in A, b \in B \}.$

Hint: Consider the function $f: X \to \mathbb{R}$ defined by f(y) = d(x, y) and $g: X \to \mathbb{R}$ defined by g(y) = d(y, B). Lemma 2.13 should be useful.